Master Systems Integration: Delivering Total Facility Optimization

Stark Integration, which includes U&S Services and Technical Building Services in New York and mc2 in Florida, delivers actionable insights through data-driven analytics and automation technology.

Stark’s Integration teams customize solutions that optimize productivity, safety and comfort. Stark’s customized technology packages unify building systems with a single pane of glass to help reduce waste and improve efficiencies through data-driven analytics and actionable insights. Stark’s mc2 team delivers scalable customized solutions and services designed to optimize uptime, reduce unscheduled maintenance events, and ultimately improve building environments through precision control.

Stark Tech Group’s mc2 team in Florida adds Notifier by Honeywell to Protective System offerings

For Immediate Release: mc2, a Stark Tech Group Integration company, has partnered with Notifier by Honeywell to offer protective system products to public and private commercial customers in Florida.

Notifier by Honeywell’s product lines include:

  • Control panels
  • Voice communication systems
  • Fire alarm initiating devices
  • Emergency communication systems
  • Wireless Technology
  • Smoke Detection
  • Flame and Gas Detection
  • Power Supplies and Batteries
  • DAS Systems and Surveys

Stark Tech Group’s mc2 is a Master Systems Integrator of complex IP-based automation systems, delivering actionable insights through data-driven analytics and automation technology. mc2 has added Notifier products as stand-alone offerings and as part of comprehensive technology packages that unify protective systems infrastructure with building management systems into an easy-to-manage platform. The team, based in Orlando, Fl. with offices also in Cape Canaveral, Jacksonville, Tallahassee, Tampa in Florida and South Georgia, offers technology packages within DIV25 standards for faster response and potentially life-saving decisions with information for sharing, analysis and reporting.

For more information, visit starktechgroup.com

As Building Infrastructures Age, Up-to-date Assessments Can Ensure High Performance and Resilience

Changes to a building that occur over time can often make building performance less efficient and less resilient. As time goes on, building use characteristics often diverge from those that were used initially to design and commission a building. A good example of this is improper outside air ventilation rates which can lead to problems with indoor air quality (IAQ), or excess operational costs. Building power and cooling infrastructure components can also wear out and fall out of calibration. As more and more powered equipment gets added, power capacities are exceeded, and unanticipated downtime issues begin to emerge.

As systems age, they decline in performance, which leads to failures that significantly impact the bottom line. We partner with our customers to implement solutions that keep systems operational by thinking strategically about proactive measures and how those actions impact the business over time.

Building Intelligence Solutions that improve indoor air quality, reduce excess operational costs.
Businessman using tablet and laptop analyzing sales data and economic growth graph chart. Business strategy. Digital marketing. Business innovation technology concept

At Stark Tech Group, we work as a Schneider Electric EcoXpert™ Partner with expertise in their EcoStruxure™ Building architecture and building automation. Our engineers encounter many situations where building owners need help improving existing building performance.

A perfect example is a research facility that examines proteins and crystals in their research of bacteria and virus-borne diseases. The facility recently decided to upgrade its installed base of microscopes in response to pharmaceutical customer demand for more accuracy. Their existing building power infrastructure supported a 1-megawatt (MW) power switch, which was previously adequate as the building consumed 600 kW of power on an average day, and nosed up to 800 KW on the hottest of summer days when air conditioning systems work at full capacity.

Given the required upgrade, a cost effective, steady power supply with peaks in excess of 1MW was now required in order to accommodate stringent purity requirements and to avoid losing both data and research samples.

Our solution was to implement a lithium-ion-based energy storage solution physically located inside of the building. The battery selected for this purpose supplies stored power to the facility when demand spikes over 1MW and then recharges from the grid. This cost-effective change to the lab’s existing power infrastructure successfully managed the building’s increased power capacity requirements and helped the research lab remain competitive in their market.

Approaches for validating current building requirements

For organizations seeking to ensure consistent building power, cooling, and building automation performance, here are some preliminary steps that should be taken to validate requirements:

  • Identify common needs of both traditional and new critical infrastructure – Building owners need to periodically assess the health of different types of building critical infrastructure. This includes both generators and power distribution systems and the IT backbone – anything that keeps the building on its mission at a predictable operating cost. These infrastructure pillars need to be assessed in order to determine whether changes to the building have altered the efficiencies.
  • Identify needs unique to your facility – Understanding the unique requirements of the building under management also heavily impacts how technology is deployed to improve performance. Sports arenas, for instance, have a specialized need for higher dehumidification. High precision temperature control and monitoring are needed to both accommodate tens of thousands of fans and to assure that ice rink temperatures, for example, are properly maintained.

Healthcare facilities require more highly regulated environments. Circulating air has to be regularly monitored. Sophisticated backup power systems are required since connected hospitals have no real ability to shut down. In government and municipal buildings–such as prisons and K-12 public schools–a higher focus on safety and security emerges as a primary concern. Commercial buildings are focused more on comfort and lighting so that employee productivity can be maintained. Knowing the unique characteristics of your building and applying the right building automation technologies suited to those unique needs is a key performance driver.

Changing times demand more building resilience

Regardless of the type of facility, building owners also need to be aware that building resilience is emerging as a growing need. For many years, predictable building performance was taken for granted by the occupants. But now, the existing power grid has grown older. As power sources such as coal and nuclear phase out in the US, new solar and wind power are being introduced. These changes make power quality more intermittent and downtime can now occur in areas where power fluctuations were once rare. In addition, pockets of businesses continue to expand across regions driving more demand for clean, “always on” power. In these cases, building infrastructures need to be reexamined in order to withstand the demands of the “new normal.”

To learn more about how digitized building automation solutions can improve building performance, visit the Schneider Electric EcoStruxure for Buildings web site.

Want to see how Stark Tech Group, a Schneider Electric EcoXpert, is helping to drive energy efficiency in buildings? Read more here.